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Turbulence and waves in a rotating tank 

By E. J. HOPFINGER, F. K. B R O W A N D ~ A N D  Y. GAGNE 
Institut de Mhcanique, Universit6 de Grenoble, Grenoble, France 

(Received 11  December 1981 and in revised form 24 May 1982) 

A turbulent field is produced with an oscillating grid in a deep, rotating tank. Near 
the grid, the Rossby number is kept large, 0(3-33), and the turbulence is locally 
unaffected by rotation. Away from the grid, the scale of the turbulence increases, the 
r.m.s. turbulent velocity decreases, and rotation becomes increasingly important. The 
flow field changes dramatically at a local Rossby number of about 0.20, and thereafter 
remains independent of depth. The flow consists of concentrated vortices having axes 
approximately parallel to  the rotation axis, and extending throughout the depth of 
the fluid above the turbulent Ekman layer. The number of vortices per unit area is 
a function of the grid Rossby number. The local vorticity within cores can be a factor 
of 50 larger than the tank vorticity 2R. The total relative circulation contained in 
the vortices remains, however, a small fraction of the tank circulation. 

The concentrated vortex cores support waves consisting of helical distortions, 
which travel along the axes of individual vortices. Isolated, travelling waves seem 
well-described by the vortex-soliton theory of Hasimoto (1972). The nonlinear waves 
transport mass, momentum and energy from the vigorously turbulent region near 
the grid to the rotation-dominated flow above. Interactions between waves, which 
are frequent occurrences, almost always result in a local breakdown of the vortex core, 
and small-scale turbulence production. Usually the portions of broken core reform 
within +-1 rotation periods, but occasionally cores are destroyed and reformed on a 
much longer timescale. 

1. Introduction 
Considering the wide range of practical application of rotating turbulent flow to 

geophysical and astrophysical phenomena, and also to rotating machinery, the 
information available is surprisingly scarce. Experiments have been performed by 
Gough & Lynden-Bell(1968), Bretherton & Turner (1968), Ibbetson & Tritton (1975), 
McEwan (1976), Colin de Verdiere (1980), and most recently Dickinson & Long (1982). 
These experiments cover a variety of flow regimes, and emphasize different aspects 
of the motion. 

Gough & Lynden-Bell(1968), Bretherton & Turner (1968), and Ibbetson & Tritton 
(1975) were interested in demonstrating the effect of turbulent mixing upon the mean 
distribution of angular momentum. Scorer (1966) had earlier considered a rotating 
flow with axial symmetry and speculated that small-scale turbulent mixing would 
make the distribution of angular momentum roughly constant. This would mean that 
vorticity would be removed from the mixed region and concentrated at the centre 
and on the boundaries of the system. Neither Bretherton & Turner nor Ibbetson & 
Tritton were able to demonstrate significant vorticity expulsion (angular-momentum 
mixing). 

t Permanent address : Department of Aerospace Engineering, University of Southern California, 
Los Angeles, CA 90007. 
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McEwan (1976) examined the turbulent flow more carefully, and showed that there 
did exist local accumulations of vorticity. Indeed the major feature of the flow was 
the presence of a number of such vortices populating the cross-section of the tank. 
Concentration by a factor of 2-3 times the background vorticity 2R was shown by 
McEwan. Colin de Verdiere (1980) has attempted to  model a large-scale geophysical 
system on an f-plane and a @-plane. He used low-frequency boundary forcing, which 
would be appropriate for the mesoscale eddy system in the ocean. Local concentrations 
of vorticity were again an important feature of the flow. Dickinson & Long (1982) 
have studied the propagation of a turbulent front in a rotating container. They 
observed a change in propagation velocity and flow structure at a certain distance 
away from the forcing plane. 

Experiments aimed at understanding turbulent flows in rotating machinery are few 
in number also. As examples we cite the work of Escudier (1979), Escudier & Zehnder 
(1982) and Escudier, Bornstein & Maxworthy (1982). For simplicity, their experiments 
involved no rotating parts, but did contain concentrated vorticity and turbulent 
breakdown as common features. The concentration of vorticity was produced by 
strong axial motion. The vortices underwent a complex series of transitions or vortex 
breakdowns, which are well described by Escudier & Zehnder (1982) and Escudier 
et al. (1982). 

Most of the rotating-flow experiments to date have been performed in relatively 
shallow tanks (the exception is the recent experiment of Dickinson & Long, which 
proceeded independently). This has precluded the possibility of studying what seemed 
t o  us t o  be an important aspect, the transition from strongly three-dimensional turbulence 
to a turbulentJlow dominated by rotation. The present experiment utilizes a deep tank, 
where we can be sure t o  capture this transition phenomena. We have also chosen to 
generate turbulence by means of an  oscillating monoplane square-bar grid. More is 
known about the details of the turbulent field generated by an oscillating grid (see 
Hopfinger & Toly 1976) than for any of the previously used excitation methods. 

The present study reveals an  unexpected variety of phenomena that have not been 
discussed or commented upon before. Among these are the observations showing the 
extreme degree of eorticity concentration, and the observations of soliton propagation 
(Hopfinger & Browand 1982). We note also the close connection between previous 
studies of vortex breakdown, and our observations of vortex-core disruptions 
produced by the interaction of travelling solitons. Section 2 is a brief description of 
the apparatus, and $3 contains a discussion of results. I n  $4, we compare the 
experimental waveform with theory; and discuss wave interactions in $5. Section 6 
contains a summary and a few concluding remarks. 

2. Experimental apparatus 
The experiments were conducted in a transparent cylindrical tank 40cm in 

diameter and 80 cm in depth, shown schematically in figure 1 .  A turbulent velocity 
field was generated in this tank by means of a grid oscillating about a horizontal plane, 
located 15 ern above the lower endwall. By keeping the generating grid some distance 
away from the endwall, unwanted secondary motions are likely to be kept to a 
minimum, according to Hopfinger & Toly. The observed phenomena do not depend 
upon the position of the grid with respect to the bottom. When a false bottom was 
placed close to the grid (allowing for about 5 mm spacing when the grid was in the 
lower position) no qualitative difference in flow structure could be noticed. The grid 
consisted of 1 cm square bars with a mesh M = 5 cm. The stroke S (defined as twice 
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FIGURE 1.  Schematic of the experimental set-up. The positions of visualisations A ,  B ,  C, D are 
respectively at z = 30 cm, 45 om, 155 em, 5 5  em. The direction of tank rotation is clockwise. 

the amplitude) and the frequency n of the grid oscillation could be adjusted over a 
wide range (n < 20 rad s-l, S < 5 cm). The r.m.s. horizontal turbulent velocity and 
the integral scale in a non-rotating system were given by Hopfinger & Toley (1976) 
as 

1 = K,z, (2.2) 

where Kl and K ,  are functions of S for given n, and z is measured from the midplane 
of the oscillating grid. (Hopfinger & Toly showed that the origin determined by 1 = 0 
lies slightly below the midplane, but for convenience we take z = 0 in the grid 
midplane and adjust K, and K,.) For S = 4 cm, the value used in all the experiments, 
the corresponding values for the constants are C = 029/2n or Kl = 0.83 om2 and 
K ,  = 026. The tank (including the grid) was mounted on a one metre diameter 
rotating table. Rotation rate could be adjusted continuously up to  2n rad s-l and 
kept constant to  well within 1 % of the rotation rate. The precision in alignment of 
the tank with respect to the table was better than 5 s of arc. A transparent cover 
was placed below the free surface in the upper end of the tank to  eliminated unwanted 
/3-effects and to  improve the optical quality of the free surface (it remained free from 
disturbances). The cover was 52 cm above the grid midplane. Measurements were 
made by analysing time-exposure pictures and 16 mm cin6 films. Horizontal slices 
of fluid approximately 1 cm thick, and containing trace amounts of wood particles 
( x 300 pm diameter), were illuminated at positions A = 30 cm, B = 45.5 cm, 
C = 155 cm and D = 5 5  cm (see figure 1)  to determine the flow field as a function 
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5 cm 

(a )  

FIGURE 2 (a) .  For caption see facing page. 

of depth. Information about the flow parallel to the rotation axis was obtained by 
illuminating a vertical slice of approximately 2 cm thickness. Mean-flow measure- 
ments were made with a laser-Doppler anemometer. 

Most of the experiments were conducted a t  a grid oscillation frequency of 
6.63 x 2n rad s-l and for a tank rotation rate of 277 rad s-l. Some runs were made with 
grid frequencies of 3.3 x 2n and 2077 rad s-l, and for tank rotation rates of n, and 
0.2n rad s-l. The non-dimensional parameters characterizing the flow are as follows: 

Here u and I ,  are, respectively the velocity and lengthscale 
horizontal flow field far from the grid, H i s  the depth of the fluid 

associated with the 
column, andf = 2 0 .  
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( b )  
FIGURE 2 .  Streakline photographs of the turbulent flow field in a cross-section of the tank 30 cm 
above the grid midplane, (view from above): ( a )  without rotation, n = 133n rad s-l, (8 = 4 em);  
( b )  with rotation (clockwise tank rotation as indicated by the arrow), n = 13.3n rad s-', 
R = 277 rad 5-l ( R o ~  = 3-32). The exposure time was 0 2 5  s. 

3. Experimental results 

The most striking effect rotation has upon turbulent field is the generation of intense 
vortices. This is clearly seen from a comparison of the streakline photographs shown 
in figure 2. This figure illustrates the instantaneous velocity field in a cross-section 
of the tank, located a t  position A (30 em above grid midplane). Figure 2 ( a )  shows 
the velocity field without rotation and figure 2 ( b )  that with rotation. The arrow in 
figure 2 ( 6 )  indicates the clockwise tank rotation. The exposure time was f s. In  both 

3.1. Vortex genesis (revealed by observations in a horizontal plane) 

17 2 
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cases the grid oscillation frequency was 6.63 Hz. Figure 2 ( b )  was taken in the rotating 
frame of reference, and shows the velocity field relative to rigid-body rotation a t  
52 = 27r rad s-1. The velocity fluctuations near the grid are proportional to the 
product nS, while the magnitude of the Coriolis force is proportional to 20s. Roughly 
speaking, the ratio n / 2 n  is a Rossby number associated with the flow near the grid. 
We refer to this Rossby number as Ro,. For the conditions shown in figure 2(b ) ,  
Ro, = 3.32. 

With rotation, the flow field now contains a seemingly random collection of regions 
of coherent eddy motion. Visualizations a t  positions B (45.5 cm above grid) and C 
(15.5 cm) showed a similar result, but a t  D (5.5 cm) the presence of coherent eddies 
became less evident. Careful observation of video films indicated a sense of rotation 
that is principally cyclonic (same direction as tank rotation). Thus the motions cannot 
be inertial waves (which must be anticyclonic), but rather represent local areas of 
increased vorticity, which we will simply call vortices. Vortices have also been 
observed by McEwan (1976), and there is some indication of vortices in the 
experiment by Dickinson & Long (1982). The velocity field in the vicinity of typical 
vortex cores (for Ro, = 3-32) is roughly 6-10 cm/s at a radius of 1 cm. It is very 
difficult to obtain reliable velocity information from these observations of tracer- 
particle trajectories. The major problem is the ambiguity in defining the beginning 
and end of individual particle paths. (Particles having a vertical velocity component 
can pass in or out of the light during the exposure time.) It is, however, noteworthy 
that the vortex cores generally contain few tracer particles. We attribute this fact 
to the centrifuging of the heavier wood particles (particle density x 1.15 g/cm3). 
Absence of particles in the cyclonic cores suggests that larger velocities may exist 
there. 

If the turbulence intensity a t  the grid is increased by increasing the oscillation 
frequency, or if the rotation rate is decreased for fixed oscillation frequency, then 
anticyclonic vortices (relative to the rotating frame) are also observed. Examples are 
shown in figure 3 (a )  for a Rossby number Ro, = 6.63, and in figure 3 ( b )  corresponding 
to Ro, = 33.2. These photographs were taken at the same position as those shown 
in figure 2, but with the exposure time increased to 0 5  s. The outer arrows in figures 
3(a ,  b )  indiccte the clockwise tank rotation, and the arrows drawn inside the tank 
boundary indicate the existence of cyclonic (here clockwise) and anticyclonic vortices, 
as was observed by means of a video camera. At a Rossby number of 6-6 the 
anticyclonic vortices are not scattered randomly, but occupy a ring of fluid near the 
outer boundary. These vortices have much higher particle concentrations in the core 
regions, which suggests that  they are much less intense than their cyclonic 
counterparts. For the largest Rossby number, Ro, = 33.2, anticyclonic and cyclonic 
vortices are, perhaps, more interspersed. 

The presence of intense cyclonic vortices and (much) weaker anticyclonic vortices 
can be understood in simplest terms as a local stretching of the basic axial (rigid-body) 
vorticity field. That is, vertical stretching and (horizontal convergence) can produce 
local increases in vorticity that are many times the background vorticity 252. However, 
local horizontal divergence can only deplete the background vorticity to produce 
anticyclones of strength, - 252. 

The total population of vortices decreases with increasing Rossby number, and 
their size and average spacing increase. In  figure 4 we have plotted the number N ,  
of vortices, as a function of inverse Rossby number l /Ro,.  The error bars on N are 
large because the selection criterion for vortices is somewhat subjective. Even so, 
figure 4 suggests a linear dependence between the number of vortices and the inverse 
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grid Rossby number l /Ro, ,  except perhaps for the largest value of Ro,. A linear 
relation between the number of vortices and the inverse grid Rossby number would 
be supported by the assumption that a transition from three-dimensional turbulence 
to a turbulent flow dominated by rotation takes place a t  a certain height above the 
grid and represents a j x e d  value of Rossby number based on local flow properties. 
This result (which will be developed in $3 .3 )  implies 

N x KRoT[ $1, 
where K is a constant and Ro, is the Rossby number characteristic of the transition 
to rotation-dominated turbulence. 

Video film observations at Ro, = 3-32 show the vortices to be clearly present over 
times of at least 7-10 s, and occasionally even longer. During this time, the individual 
vortex strengths vary quasi-periodically until, and a t  some stage, the vortices lose 
coherence and become unrecognizable. The typical lifetimes are much longer than 
any eddy turnover time. It is not clear from these observations whether individual 
vortices are created and destroyed on this timescale or whether the vortices exist more. 
or less permanently, but have highly modulated core strengths. Arguments in favour 
of destruction are, however, developed in $5. 

3.2. Expulsion of mean vorticity 

When the grid Rossby number is small, the mean flow is nearly solid-body rotation, 
but for larger grid Rossby numbers, significant departures from constant vorticity 
(solid-body rotation) are observed. These conclusions can be obtained directly from 
the previous figures. For example, contrast figure 2 ( b )  with figure 3 (a ) ,  where the 
mean drift is clearly indicated near the wall. In  figure 3 ( b )  the mean flow meanders 
considerably, but still exists. The qualitative result is born out by laser-anemometer 
measurements of the mean flow. The measured values of velocity are plotted in figure 5 
as the corresponding mean vorticity, normalized by 2 0 ,  for Ro, = 3-32, 6.63 and 
33.2. The integral of the vorticity distribution for the two lower values of Ro, gives 
a constant value for the total circulation, and this serves as a convenient check on 
the measurements. For Ro, = 33, the region near the centre is not accessible, and no 
integration was made. 

At Ro, = 3.32, the vorticity is nearly equal to 2R everywhere, although there exists 
a slight excess (increased rotation) near the centre, and a slight counter-current 
(decreased rotation) near the outer boundary. As the Rossby number is increased, 
a substantial decrease in local mean vorticity develops, which is coincident with a 
strong counter-current. In  the words of previous researchers, an ‘expulsion ’ of 
vorticity takes place from the intermediate region to the region nearer the outer wall 
and to the region nearest the centre. The deficit in vorticity when Ro, = 6-63 coincides 
with the centres of the anticyclones located near the boundary in figure 3 ( a ) .  The 
size of these anticyclones is roughly equal to  the extent of the vorticity-defect region 
in figure 5. At the highest value of Ro, the distribution of mean vorticity again 
changes shape. The low-vorticity region broadens and shifts to smaller radius, 
although the minimum vorticity remains approximately 8 ( 2 0 ) .  More vorticity is 
collected near the centre of rotation and less is collected near the outer wall. 

3.3. Transition to rotation-dominated turbulence 

In  $ 3.1. it was mentioned that a linear relation between number of vortices and inverse 
grid Rossby number is consistent with a transition in flow structure that occurs a t  
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5 cm - 

(a ) 

FIGURE 3(a ) .  For caption see facing page. 

a fixed value of local Rossby number. The reasoning will now be developed, and 
additional experimental evidence provided for support. First, it  is clear that such a 
transition must take place somewhere in the depth of the tank, because the flow near 
the grid (Rossby numbers are large) is unaffected by rotation, and the flow far away 
is dominated by rotation. It is known from the experiments of Hopfinger & Toly 
(1976) (see (2.1)) that in the three-dimensional regime velocity fluctuations must 
decrease with distance away from the grid ( z  in our case), and that scales of turbulence 
must increase. Thus a local Rossby number, defined as 

will decrease with distance from the grid. The evidence is that a transition in flow 
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( b )  

FIQURE 3. Streakline photographs of the turbulent flow field in a cross-section at z = 30 cm for 
n = 1 3 . 3 ~  rad s-l (view from above, clockwise tank rotation indicated by dark arrow): (a)  
CI = 7r rad s-l (Rag = 663); ( b )  R = 0.2n rad s-l (Ro, = 33.2). Exposure time 0 5  s .  The arrows 
inside the tank boundary are added to indicate cyclonic (clockwise) and anticyclonic (counter- 
clockwise) vortices. 

structure occurs rather abruptly. The change in mean azimuthal velocity relative to 
the rotating frame with height z normalized by me%h size M ,  is shown in figure 6 for 
three grid Rossby numbers. The measurements were milde a t  r / R  = 0.9 ( r / R  = 0 8  
for Ro, = 33.2), and show roughly similar behaviour for the two lower Rossby number 
cases. I n  the region nearest the grid the mean flow relative to the rotating frame is 
anticyclonic but small. As distance from the grid increases, the mean anticyclonic 
motion increases, overshoots and then approaches an asymptotic value, which 
remains unchanged with further increase in z.  At the largest grid Rossby number the 
mean flow nearer the grid is cyclonic, then becomes anticyclonic, as i t  approaches 
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FIGURE 4. Number of vortices in a cross-section plotted as a function of inverse grid Rossby number 
The straight line expresses the linear dependence given by (3.6). 
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FIGURE 5. Mean absolute vorticity normalized by 2R as a function of tank radius: A, Ro, = 3.32; 
0 ,  6.63; ., 33.2. The arrow indicates the position of the anticyclonic vortices when Ro, = 663. 
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FIGURE 6. Mean velocity in a rotational frame as function of z f M  measured a t  r fR = 0 9  for 
Ro, = 332 and 663, and at r J R  = 08for Ro, = 332: A, Ro, = 332, v,/ClR,,, = -0019; 0 , 6 6 3 ,  
-0105; W ,  332, -0114. V, represents the largest departure (far above the grid) from the state 
of rigid-body rotation. The arrows mark the position of transition in flow regime. 

the asymptotic value (at r / R =  08). The heavy arrows in the figure mark the 
beginning of the region in each case, where azimuthal velocity becomes independent 
of the vertical coordinate. Visual observations above and below this point (at 15.5 cm 
and 5.5 cm for Ro, = 3.32 and 6-63) confirm the qualitative difference in flow 
structure, i.e. the flow nearer the grid lacks the organized vortices seen in previous 
photographs. Thus the position of the arrows marks the onset of rotation-dominated 
turbulence. 

The consequences of assuming an abrupt transition a t  a fixed local Rossby number 
are as follows. Assume that near the grid 

Z(z) = K Z z ,  (3.3) 

where u is fluctuation level; Z is integral scale; z is distance from grid, and K,, K ,  
are constants (see (2.1), (2.2)). This should apply up to the point of transition. Setting 

and substituting (3.2) and (3.3) gives an expression for ROT in terms of the transition 
distance zT: 

Using values of Kl and K ,  given in $ 2  with the three transition distances observed 
at the three grid Rossby numbers yields the value 

RoT sz 0.20. 
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This result can be used to write a general expression for the turbulent Ekman-layer 
thickness, by defining the Ekman-layer thickness to be the transition distance zT. 
Thus 

which becomes 

- 

( 3 . 4 ~ )  

(3.46) 

Dickinson & Long (1982) observe a similar transition in flow structure. Their value 
for the transition Rossby number, based on visualizations is, in our terminology, 
0.27431. 

The scale of the eddies first affected by rotation is approximately 

giving 

( 3 . 5 ~ )  

(3.56) 

For a grid Rossby number of 332, this results in an eddy size of the order of 1.9 cm, 
which is approximately the scale of the active regions seen in figure 2 (6). For a grid 
Rossby number of 33.2 the prediction is 5.8 cm, which is also in rough agreement with 
figure 3 (6). 

If the spacing of vortices is used as the typical scale, and it is assumed that the 
spacing is some multiple of the transition distance, 

spacing = I ,  N 1, N zT, 

then the previous expression (3.1) for the number of vortices in the cross section 
follows immediately : 

area of tank D2 1 
N =  w - = K R o , - ,  

ROg area of vortex 1; 

where D is the tank diameter. The value of K determined from the slope in figure 
4 gives a value for the ratio of vortex-spacing/vortex-size of &/lT = 4.5, which again 
is in accord with the visual observations. Finally, a Rossby number for the 
turbulence, based on vortex spacing, is Ro, = 0*20/4.5 = 0.044, and this is comparable 
to Rossby numbers estimated by Colin de Verdiere (1980) for a similar experiment, 
but using low-frequency (low-Rossby-number) forcing. 

3.4. Vortex strength (observation in a vertical pbne)  
The photographs discussed earlier have suggested that vorticity is highly concentrated 
in cores of relative small extent. In  order to visualize these vortex regions, we have 
illuminated a vertical slice of approximately 2 cm width through the centre of the 
tank. Tiny gas bubbles are introduced into the bottom of the tank, and these collect 
in the low-pressure vortex cores to provide a means of visualization. Such a vortex-core 
visualization is shown in figure 7 for a Rossby number Rog = 3.32. The result is 
surprising! The cores are extremely thin - the one in figure 7 is typical - and extend, 
coherently, over the entire depth of the flow. Generally speaking, cores are aligned 
with the rotation axis, but, of course, they are not precisely vertical. They undergo 
large-scale distortions, presumably produced by neighbouring cores, and appear to 
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FIGTJRE 8. Free-surface deformations produced by a vortex (Ro, = 332): ---, observed; ----, 
corrected for surface tension. The radius ri = (r/Znn)t. 

wander slowly about the tank. There are also many smaller-scale distortions (several 
are marked in figure 7), which propagate along the core. (These disturbances are 
discussed in 593.5 and 4.) One might describe such a flow field as being quasi- 
two-dimensional, that  is having significant - but not perfect - correlation in the 
vertical direction. 

Visual estimates of the illuminated core diameters give a number like 1-2 mm. The 
relation between the vortex core and the illuminated core size is uncertain, and 
another method was used to  estimate the actual distribution of vorticity. The cover 
was removed from the tank and the water level lowered to  about 30cm (for 
photographic reasons). The free surface was now populated with tiny craters, each 
one reflecting a concentrated vortex below. By filming the cross-section of such 
craters (correcting for distortion through the cylindrical tank wall), i t  was possible 
to determine the distribution of velocity that gave rise to local changes in water-surface 
elevation. This was more difficult than anticipated. One example has been worked 
out in detail - the observed crater shown in figure 8 as the solid line. The corresponding 
velocity field required to produce the observed crater is shown as the dotted line in 
figure 9. However, this result is not correct, since an  estimate of the curvature of the 
surface shows that surface tension will have an important influence. The vortex 
strength was determined by first calculating the pressure difference made up by 
surface tension using the equilibrium curvature in the central region of the vortex. 
Then, the surface shape in the absence of surface tension was calculated by choosing 
as a model velocity distribution the Rankine vortex 

I V = (w,+SZ)r ( r  < E ) ,  

(3.7) 

where V is the absolute azimuthal velocity relative to the centre of the vortex, and 
E ,  o,, and r are parameters to be determined (only two are independent since 

= 2ns2w,). The circulation and vortex core radius were determined by choosing the 
best fit in the central portion of the vortex. The corrected velocity distribution is 
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FIQURE 9. Radial velocity distribution in a vortex relative to a frame moving with the centre of 
the vortex for Ro, = 3.32: ----, velocity field corresponding to the observed crater in figure 8; 
-, velocity field obtained from the vortex model including the effect of surface tension. The 
characteristic radius ri = (r/2nn)*. The open symbols correspond to velocities determined from 
selected vortices in figure 2 (6) and A refers to velocities determined from cine films. 1 indicates 
velocities measured by McEwan (1976). 

shown as the solid line in figure 9, and the surface shape - if indeed there was no 
surface tension - is shown as the dotted line in figure 8. The correction to the velocity 
profile is dramatic, and indicates the essential need to include surface tension. The 
' best-fit ' values are 

8 z 1.5 mm, 

w, x 248 rad s-l, 
r z 35 cm2 s-l. 

The core size is thus slightly larger than the core indicated by the bubbles. The 
concentration of vorticity is considerable. The core rotation w, is about 40 times larger 
than the ambient rigid-body rotation. The circulation contained in one core is only 
about 020% of the circulation around the tank, however. Since there are 
approximately 20 such vortices (figure 4), the total circulation bound up in the vortex 
cores represents approximately 4.5 % of the tank circulation. 

The iteration scheme required to eliminate the effect of surface tension might 
suggest that the above values are particularly sensitive to the model chosen. In  fact, 
this is not so. The value of w, depends primarily upon the difference in pressure made 
up by the surface tension at the centre of the core (i.e. the increased depth of the 
crater in figure 8). This in turn depends only upon equilibrium surface curvature at 
the centre, and the value of surface tension, both of which are known reasonably 
accurately. The same flow has also been photographed with a surface-tension-reducing 
agent added. Figure 10 shows the free surface for grid Rossby number equal to 3.32, 
with the surface-tension-reducing additive. The effect of the additive was to reduce 
surface tension to about half the value for water alone. I n  this case, surface craters 
are formed (figure lo), with indentations comparable to those estimated by our model. 

The velocity distribution in figure 9 is non-dimensionalized by the radius r i ,  which 
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PIQURE 10. Photograph of the free-surface deformations caused by the vortices. Surface tension 
has been reduced by about 50 %. 

may be thought of as the characteristic radius for the vortex. It is the radius for which 
the model velocity in the rotating frame is equal to the rotational velocity of the 
reference frame. It is obtained by equating 

r 
rR = - 

2nr ’ 
to give 1 

ri = (&) x 0.94 cm 

for the present case. The induced velocity at  r = ri in the rotating frame is 5.9 cm s-l. 
Using this velocity and the length 2ri gives a Rossby-number estimate for the active 
regions as Ro = 0 2 5 ,  which is essentially equal to Ro, calculated in 53.3. 

A direct measurement of core velocities is extremely difficult, as discussed in 53.1. 
Nevertheless, several data are shown in figure 9. The points indicated with open 
symbols were obtained by observing wood-particle streaks in a horizontal plane, 
giving images as shown in figure 2 ( b )  ; and the points with solid symbols were obtained 
from observing more neutrally buoyant particles on a cinB film (frame by frame) with 
illumination in a vertical plane. We have, perhaps, slightly more confidence in the 
solid-symbol points because the individual particles can be identified unambiguously 
and followed through many time steps. The solid symbols were taken from particle 
paths directly under the free surface for the vortex that was used to determine the 
model velocity distribution. The open symbols were from other vortices, and need 
not agree in detail with the model. 

One final interesting conclusion can be made regarding the distribution of velocity. 
We now have two expressions as estimates for the scale of the size of vortices in the 
rotation-dominated flow : the expression for 2ri in (3.8), and the expression for 1, in 
( 3 . 5 a ) .  Equating these two expressions gives an expression for the circulation that 
is indeDendent of rotation rate. 

I 

( K ,  has units of length2). The reason for this interesting result is that as the size of 
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the vortices increases with increasing Ro, (cf. (3.5)) vorticity is gathered from a larger 
region, and the circulation remains relatively constant. This result is born out directly 
by observations of the velocity field a t  the three grid Rossby numbers (figures 2 6 ,  
3a,  b ) .  

3.5. Observations of travelling wave disturbances 
One of the most interesting dynamical aspects of this rotating turbulent flow are the 
wave disturbances which are observed to travel along the cores. Figure 7 ,  for example, 
shows several waves travelling on a single core. The positions of the waves are 
indicated in the figure. The disturbances have the form of a helical distortion of the 
core (well-defined in figure 7 (a) ,  but less so in 7 ( b ) ) .  The distortions propagate as a 
result of self-induction. The waves are not the result of the presence of gas bubbles 
in the vortex cores, since similar wave motions are observed in the complete absence 
of bubbles. However, the wave motions are not so distinct when wood particles or 
dye are used as tracers.? 

The possibility of such vortex core motions was discussed in general terms by 
Batchelor (1967), by Hasimoto (1972), and recently by Kida (1981). Simple dynamical 
arguments suggest four possible wave types. These possibilities are sketched in figure 
11. In  all cases the core vorticity vector is oriented downwards (clockwise rotation, 
as in the experiment). Example ( a )  is a left-handed open helix, which might for 
simplicity be called a ‘left kink ’. The induced motion causes the left kink to propagate 
upward in the opposite direction to the vorticity vector. The pattern rotates as it 
travels, with a sense of rotation opposite to the rotation of the core. A helix may also 
double back upon itself to form a loop or ‘antikink’. Example ( b )  is a left antikink, 
which also travels in a direction opposite to the vorticity vector, but the pattern 
rotates in the Same sense as the core rotation. From symmetry, the other two 
possibilities are a ‘right kink’, and a ‘right antikink’, both of which propagate in 
the same direction as the vorticity vector. Again, the right kink rotates in a sense 
opposite to the core rotation, while the right antikink rotates in the same sense as 
the core rotation (figures 11 c, d ) .  All of these wave types have been observed in our 
rotating turbulent flow. Typical waves have wave envelopes that extend over several 
centimetres (wavelenths along core axis) and wave amplitudes of a fraction of a 
centimetre. 

4. Vortex-filament solitons 
The waves appear to propagate as single entities, and to travel many times their 

length without appreciable change in shape. This fact suggests the possibility of a 
solitary-wave (soliton) description for the phenomenon. Hasimoto (1972) has shown 
that helicoidal solitons can exist on a single isolated vortex core in an irrotational 
flow. In the model the circulation is assumed constant, and the vortex filament is 
not allowed to stretch. The induced motion is calculated as if the vortex filament were 

f The gas bubbles are assumed to represent correctly the vortex axis, but they underestimate 
somewhat the vortex core diameter, as is seen from figure 8. Arguments in favor of a correct 
representation of the axis can be deduced from an examination of figure 7, which shows that the 
bubble core (bright) iscentredin thevortex whoselimitsare indicated by the horizontal wood-particle 
streaks. The inertia of the bubbles was small and therefore they easily followed any core distortions. 
The buoyancy effect was negligible, since the bubbles were observed to rise only very slowly when 
turbulence was absent. Dye was also used to visualize the helicoidal distortions, but i t  was difficult 
to inject the dye into the vortex centre, and because of vortex breakdown, the dye would rapidly 
diffuse over a broader region. 
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(C) (d )  

FIGURE 1 1 .  Schematic representation of possible wave shapes: (a)  left kink; ( b )  left antikink; 
( e )  right kink; ( d )  right antikink. Arrows indicate the direction of propagation/rotation of the 
wave patterns. 

a circular ring having the same curvature as the actual filament. With these 
assumptions, Hasimoto demonstrated analytically that wave properties are governed 
by a nonlinear Schrodinger equation. For a vortex filament that  is straight at infinity 
there is a particular solution giving a soliton of constant torsion and varying 
curvature (torsion is the rate of change of binormal direction along the filament). 

The assumptions of the theory are not precisely appropriate to the present 
experiment. First, there are many vortex cores in our experiment, not just a single 
core. But although interactions between cores are certainly important, there are 
nonetheless intervals of time when individual cores are far from neighbours. Secondly, 
each vortex core is not an ‘isolated vortex’ surrounded by irrotational flow, but 
regions of highly concentrated vorticity in a rotational ambient fluid. As we have seen, 
however, the core regions have typical vorticities that are 40-50 times larger than 
the ambient vorticity and thus may qualify approximately as ‘isolated vortices ’. 
Finally, rotation is not included in the model. It will be shown a posteriori that the 
Rossby numbers associated with the wave-induced motions are moderately large. 
Rotation, then, is indirectly responsible for the regions of concentrated vorticity, but 
rotation has little direct effect on the wave motions themselves. 

One particular case is chosen for detailed comparison. This wave is shown 
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FIGURE 13. Computer trace of the solitary wave shown in figure 12. The vortex core beyond the 
wave disturbance has been straightened. 

sequentially in figure 12. The core is relatively straight with few external disturbances. 
The wave is observed to form on the lower portion of the core and to travel upward 
with anticlockwise rotation - it  is a left kink. The length of the wave is approximately 
5 cm and the lateral excursion of the 'core is approximately 0.6 cm. This wave is 
somewhat longer than the average wave observed. (Most of the shorter waves are too 
ill-defined to allow comparison.) 

The wave shape at successive times is traced from film, and the result digitized 
for computer manipulation. An isometric position-time history of the wave is shown 
in figure 13. (Irregularities on the core not associated with the wave have been 
suppressed.) A careful inspection of the sequence shows that the wave begins to move 
slowly; travels for a time at nearly constant speed; and finally accelerates and 
becomes entangled with another wave near the end of the trajectory. We have chosen 
to analyse the central constant-velocity portion of the record indicated in figure 13. 
During 10-12 camera frames the wave travels upward approximately one wavelength 
and rotates approximately one half-revolution. 

Two simple comparisons with theory are possible. The first is the wave shape; and 
the second comparison is the ratio of the propagation speed of the envelope to the 
maximum rotation speed of the pattern. The theoretical wave shape predicted by 
Hasimoto is (with slightly different notation) : 

sech 7 cos q5(7, t )  
2 

1 +T2 vx = - 

tanh 7 + vz,,, 2 
1 +T2 

vz = vs- - 

2 
VTmax = - 

1 +T2' 

(4.1 a )  

(4.1 6 )  

(4.1 c) 
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( b )  (C) 
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FIGURE 14. Comparison of the experimental wave and the constant-torsion soliton shape given by 
Hasimoto (1972): (a) t = 0 ;  ( b )  t = one-quarter period; (c) t = one-half period. The lateral scale is 
stretched by a factor of two. 

where z is the direction of the undistorted core, s is distance along the distorted 
filament, x is the lateral coordinate of the core, 4 is the phase of the pattern, and 
v is a scale parameter having dimensions of (length)-'. The quantity rmax is the 
maximum lateral excursion of the filament independent of phase, and T is the shape 
parameter for the wave. According to theory, T is related to  wave torsion and 
maximum wave curvature : 

2 x wave torsion 
maximum wave curvature 

T =  

The wave shape depends only on T. In practice the scaling factor v is first determined; 
then T is chosen to best fit the overall wave shape for three time instants 
corresponding to rotation of the pattern. Together these represent a time sequence 
of + revolution of the wave. The result of the comparison is shown in figure 14. The 
best overall fit of the three shapes yields the values T =3.125 for v = 064 emp1 and 
r,,, = 0.29 cm. The wave torsion and maximum curvature are then computed to be 
respectively 2-00 cm-' and 1.28 cm-l. 

At t = 0 and n/w,, the theoretical envelope is slightly too short, and a value of 
T = 3.25 would have been best. At t = n / 2 w p ,  the envelope is too long, and a value 
T = 3.00 would have been best. Thus T = 3-125 is a compromise. The other notable 
disparity is the behaviour farthest from the centre of the wave, where the theory 
predicts much more 'oscillation ' than is observed. These oscillations are extremely 
small - less than one-tenth of a centimetre - and are probably below the resolution 
of our measurements. Overall the match is exceedingly good in our opinion. 

The wave envelope travels upward with group velocity c = 1 5 7  ern s-l f 10 yo, and 
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has a rotation rate up = 13-2 rad s-l f 10 yo. Using the observed maximum radius 
rmax = 0-29 cm, the ratio 

(4.3) x 405k0'7 C - -- group velocity 
max pattern rotation speed up rmax 

with an estimated accuracy of k 20 % . The theoretical prediction is 

This second, independent comparison also gives agreement.? A Rossby number for 
the wave can be defined in terms of the group velocity and the maximum wave radius : 

C 
(4.5) Ro, x ~ - - O(5).  

a r m a x  

Under this circumstance, rotation would not be expected to affect the wave 
appreciably. 

The tentative conclusion, based upon comparison between experiment and theory, 
is that the isolated waves we observed are indeed solitons; and are approximately 
described by the theory of Hasimoto. With this in mind, the theory can be used to 
draw several additional conclusions which are in qualitative accord with experimental 
observation. The theoretical prediction for the propagation speed is 

c = 2[---] 2T 1 G. 

1 + T2 rmax 

The quantity in brackets is the wave torsion defined by Hasimoto - here given in 
terms of T and rmaX - and G is the coefficient of local induction: 

r L* 
G = -ln-. 

4n E 
(4.7) 

Again, r is the vortex circulation, and E is the vortex-core radius. G is the leading 
term in the expansion to  calculate induced motion, and is the only term kept in the 
induction approximation (cf. Batchelor 1967). The length L* may be thought of as 
an equivalent interaction length, i.e. the effective length of core that must be included 
in the induction calculation. The effective length is not predicted, although L*/E 
should remain constant within the limit of the asymptotic theory. The wave 
properties just determined, together with the previously estimated value for the 
circulation r, allow a rough estimate of the constant In (L* /E) ,  

L* 
ln- x 1.4, (4.8) 

and of L*, L* x 4.1 E. (4.9) 

6 

All solitons should approximately obey the relationship, 

c x 0.45 - - ' r .  
1 + T2 rniax 

(4.10) 

t There is a question concerning the proper interpretation of pattern rotation. The above 
expression ensures that the wave pattern having T = 1 does not rotate-a result that  seems 
physically correct on the basis of symmetry. The solution of Hasimoto would give the ratio to be 
simply T ;  this result compares slightly less favourably with the experimental observation. 
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FIGURE 15. Observations of group velocity as a function of maximum wave amplitude 
(taken from film). 

The propagation speed thus depends upon circulation r ; maximum wave excursion, 
or amplitude, r,,,; and wave shape characterized by the parameter T. The conclusion 
is that waves of fixed circulation and fixed amplitude (rmax) travel a t  different speeds 
depending upon wave shape. More surprising is the conclusion that waves of fixed 
circulation and fixed shape travel a t  a speed inversely proportional to wave amplitude. 
The reason is that wave-propagation speed is proportional to wave torsion (not to 
wave amplitude) ; and for fixed shape, a wave of smaller amplitude has the larger 
torsion. An approximate upper bound on the maximum propagation speed of 
disturbances on a core of fixed circulation is obtained by noting that the quantity 
T/( l+  P )  has a maximum value equal to + a t  the value T = 1.0. The upper-bound 
estimate is 

(4.11) 

Measurements of wave speeds taken from films are shown in figure 15. The 
measured values are divided by the previously estimated value of circulation 
(r = 35 ern s-l) and plotted against the inverse of the observed maximum wave 
radius rmax expressed in centimetres. There is an indication that smaller waves travel 
faster, but the data are far from conclusive. The upper bound (4.11) on wave speed 
does give a reasonable estimate for the larger waves, but is much too high for waves 
of smaller amplitude. Possibly, other effects intervene to limit the wave speeds of the 
smallest waves. Finally, i t  is interesting to note the relatively small range of wave 
amplitudes which were observed. The largest waves have a maximum radius (lateral 
displacement of centreline of core) of the order of 0.3-0.4 em, while the smallest waves 
observed have radii of perhaps 0.1-012 em. In  terms of the previous estimate of core 
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radius e x 0.1-0.20 cm, the largest waves observed have rmax x ( 3 4 ) s ,  and the 
smallest waves have rmax x e, 

5. Wave interaction : vortex-core breakdown 
Typical vortex cores contain many propagating waves. For the case Rog = 3.32 we 

have estimated the number of waves crossing (imaginary) horizontal planes per unit 
time. The results are 

1.1n 
number of upgoing waves/second x - 

277 ’ 

0.6R 
number of downgoing waves/second x - 

277 . (5.2) 

The results are independent of vertical position in the tank, provided that one is 
not too close to either boundary. From the results of $5  an average wave-propagation 

(5.3) 
speed can be estimated as 

Ex-. 

An estimate for average wave spacing can be obtained by use of (5.1), (5.2) and (5.3): 

0.12r 

rmax 

0.691- 

nprnitx 
average spacing of upward travelling waves z - , (5.4a) 

(5 .4b)  

Thus on our 45 cm vortex core there are, on average, 3 4  upgoing waves and 1-2 
downgoing waves. Wave interactions are frequent and often dramatic. Because there 
is so much activity on the vortex core, it is extremely difficult to follow the details 
of individual interactions. The following conclusions about wave interactions are 
therefore somewhat sketchy and preliminary. Additional, controlled experiments on 
wave interaction are planned. 

Generally speaking, wave interactions involve energy dissipation, small-scale 
turbulence production, and considerable local disruption of the vortex core region. 
There may be cases in which waves interact without subsequent modification of the 
core structure, but we were not able to demonstrate such interaction conclusively. 
We have attempted to classify the interactions leading to core breakdown into three 
categories; an example in each category is shown in figure 16 for Ro, = 3-32. The first 
category (figure 16a) is believed to be the result of reflection interaction between an 
upgoing and a downgoing wave. The second category (figure 16b) is believed to 
represent an overtaking interaction of two waves travelling in the same direction, 
but having different wave speeds. The third category, which produces the most 
violent disruption (figure 16c), appears to be caused by a single wave of large torsion 
and may not be an interaction at  all. The wave amplitude grows substantially as the 
wave progresses, and we cannot, however, rule out the possibility of additional waves 
accumulating from behind. 

The reflection interaction of two waves often produces a loop as seen in figure 16 (a) ,  
(4)-(5). The spiral structure of one of the waves is squeezed and eventually folds over 
(4). The effect of the folding is a sudden reversal in the sense of rotation. Eventually, 
a loop forms (5)-(6), and the core ruptures in the vicinity of the loop (7)-(8). A ‘patch’ 
or ‘spot ’ of small-scale turbulence develops, grows in size, and redistributes the core 

i .26r 
average spacing of downward travelling waves x -. 

npmax 
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FIGURE 16. Most frequent local vortex-breakdown modes : (a )  reflection-interaction (loop) ; 
(b )  overtaking-interaction (double-stranded helix) ; (c) overtaking-interaction (spiral) mode. The 
vortex core is traced at regular time intervals throughout the breakdown process. 
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vorticity over a much broader region (8)-( 14). The interaction region is almost 
stationary in the tank. The timescale of the breakdown (1)-(14) is of the order of 
one-half a rotation period n/Q. In  another half-rotation period, the turbulence spot 
dissipates and the core reforms. Often a wave leaves the upper end of the turbulent 
spot near the end of the interaction (11)-(14). 

The distinguishing feature of overtaking-interaction breakdown is the formation 
of a double-stranded helical core in the breakdown region. In  figure 16 (b ) ,  (4), a small 
rupture of the core occurs, although this may not always happen. The double-strand 
helix appears later, perhaps as a result of the waves overrunning one another. There 
is a pronounced drift of the breakdown region in the direction of wave propagation. 
The interaction is less violent and the recovery of the core more rapid than in the 
reflection-interaction breakdown. By (14) the core has practically reformed, this is 
approximately one-half rotation period n/Q. Again a wave disturbance appears to  
propagate away from the breakdown region (12)-( 13). 

I n  figure 16(c) a wave of large torsion is seen progressing upward. It grows in 
amplitude (1)-(5) and small isolated disruptions appear at intervals along the core. 
This is followed by a complete disruption of the core behind the advancing wave front 
(8)-(11). The large turbulent spot left behind may take on a flatter shape as time 
progresses. The timescale of the breakdown is again about half a rotation period, and 
the recovery period is of the order of one rotation period. Sometimes these waves 
traverse a considerable fraction of the depth of the tank, which can lead to 
obliteration of the entire vortex. This does not happen frequently, however. 

One is struck by the similarity between the features described and the more 
conventional observations of vortex breakdown in various laminar rotating-flow 
apparatus. A double-stranded helical form analogous to  16 ( b )  was first observed by 
Sarpkaya (1971) and by Faler & Leibovich (1977) to  be a possible mode of stationary 
vortex breakdown ; and the large-amplitude spiral breakdown (16c) has been 
identified to  occur on delta wings by Lambourne & Bryer (1961). It is plausible t o  
conclude that waves of the type observed here are also responsible for these stationary- 
breakdown phenomena. I n  the stationary breakdown, a strong axial flow counters 
the forward propagation of the wave(s), effectively bringing the process to rest. 

We have found nothing comparable to  the axisymmetric bubble observed on delta 
wings and, for example, by Faler & Leibovich (1977), and by Escudier & Zehnder 
(1982) in their remarkable visualizations. Our flow lacks the symmetry that might 
be expected to  be necessary t o  produce the axisymmetric bubble. On the other hand, 
the case involving head on collision of two waves doesn’t seem to fit any descriptions 
of observed stationary vortex breakdown either. It may be that stationary break- 
downs in most other devices start with a relatively ‘clean’ upstream flow, and that 
wave disturbances in these cases are produced only a t  the downstream end. 

We have remarked on the possibility of complete core destruction by means of 
strong high-torsion waves. It is also possible for vortex cores to be destroyed by 
interaction with neighbouring cores. Typically two neighbouring cores approach one 
another over part of their length. They intertwine and produce considerable 
distubance, which redistributes the vorticity over a broader region, approximately 
the dimension shown in (11)  of figure 16(c). The intertwining may then continue up 
to the core until vortex cores are obliterated. The events that destroy complete cores 
happen less frequently than ‘local ’ breakdowns. We have observed individual cores 
for as long as 30 rotation periods, but the average life time is probably 10-20 rotation 
periods. The important point to note is that  the vortices disappear by way of 
catastrophic events and not by gradual Ekman dissipation. 
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6.  Concluding remarks 
To summarize, we describe the major features of the turbulence in our rotating 

flow experiment. Near the grid, the Rossby number is large and the turbulence is 
relatively unaffected by rotation. Farther from the grid, fluctuation amplitudes 
decrease, turbulent scales increase, and rotation becomes more important. At a local 
Rossby number of about 0-20, there is an abrupt transition, which terminates the 
turbulent Ekman layer. Above the Ekman layer, the character of the turbulent flow 
changes completely. This flow consists of concentrated vortices, which extend 
throughout the depth of the flow (and tend to  penetrate downward into the Ekman 
layer). The vortices wander about in a random fashion and individual vortices have 
lifetimes of 10-30 rotation periods. Individual vortices seem to be well modelled by 
assuming a concentrated core and an outer, irrotational flow (superimposed upon the 
background solid body rotation). At a grid Rossby number of about 3, the core 
vorticity is approximately 40 times larger than this background vorticity 253. The 
horizontal scale of the vortices is the same as the local turbulence integral scale a t  
the transition height, and increases with the square root of the grid Rossby number. 
The core size (region of constant concentrated vorticity) is typically a factor of 7 
smaller, and probably also increases with the square root of the grid Rossby number. 
The spacing between cores is about 5 times larger than the vortex scale and can be 
expected to have the same dependence on grid Rossby number. A consequence of this 
vortex-shape invariance (which is supported qualitatively by direct observation over 
the range of grid Rossby numbers 3-0-33-0) is that  the circulation around each vortex 
depends upon the intensity of forcing but not upon the rotation. Since all scales are 
increased a t  lower rotation rates (larger grid Rossby numbers) the flow is able to 
collect vorticity from a larger area, and thus maintain roughly constant vortex 
circulation (this observation has interesting implications concerning the dependence 
of the strength of a tornado on the intensity of forcing (Hopfinger & Browand 1981)). 
We have used the phrase rotation-dominated rather than quasi-geostrophic to 
describe this turbulent field. When a Rossby number is calculated with a typical value 
of the turbulent velocity (taken a t  transition) and the vortex spacing which is 
indicative of the largest possible eddies, a value of 4 x is obtained. I n  a global 
sense the motion could thus be considered quasi-geostrophic. But, rotation produces 
a curious juxtaposition : relatively slow moving, low-Rossby-number columnar 
features which nonetheless have vortical cores dominated by ageostrophic motions. 

The principle manifestation of this non-geostrophic motion are the vortex-core 
waves. Isolated, propagating waves seem to be well described by the vortex-soliton 
theory of Hasimoto (1972). To our knowledge this is the first observation of solitons 
in a rotating turbulent flow (or in any other turbulent flow). I n  the parameter range 
investigated, these waves are an important part of the turbulence process. Away from 
the top and bottom boundaries of the tank (measurements were made a t  17 cm, 30 cm 
and 43 em from the grid), the number of waves crossing an arbitrary horizontal plane 
is practically independent of vertical position, (5.1), (5.2), and the number of 
upward-travelling waves is about a factor of two larger than the downward-travelling 
waves. A consistent interpretation is that  waves are produced and destroyed in the 
interior of the rotating turbulent region ; and the difference in numbers travelling 
upward and downward - approximately 0.5 waves s-l- represents the upward wave 
flux from the Ekman layer. We have also noticed that waves travelling upward are, 
on the average, larger in amplitude than waves travelling downward. Thus there is 
a net wave-energy flux upward from the Ekman layer. The magnitude of this 
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wave-energy contribution has not been determined quantitatively, but our qualitative 
observations suggest it is not negligible. 

The interaction of vortex-core waves almost always leads to the production of 
smaller scales of motion, which contribute to dissipation within the tank, It may seem 
to be a contradition that individual solutions are described well by a solution of the 
nonlinear Schrijdinger equation, and yet do not appear to have the property of perfect 
reflection. One possibility is that the two interacting waves, together, have an 
amplitude so great that  local breaking almost always occurs. It is significant also to 
note that the dissipative regions produced by wave breaking are intermittent in both 
space and time. 

A more intriguing proposition is that the waves may also be responsible, at least 
in part, for the maintenance of the concentrated vorticity field. The initial formation 
time of the vortices is relatively short. This time was determined experimentally by 
first establishing a condition of rigid-body rotation and then starting the grid motion. 
The measured time for the first observation of concentrated cores extending over the 
whole depth was approximately 

T f s z  x 6-7, 
277 

where Tf is the formation time. Vortices seem to appear throughout the cross-section 
of the tank on this timescale, originating apparently first near the grid and rapidly 
filling the whole depth. This timescale implies a wave mechanism. (Dickinson & Long 
(1982) give an additional argument for a wave mechanism based upon the velocity 
of the turbulent-non-turbulent front.) 

Once formed, the vortices must be continually resupplied, for diffusion will act to 
decrease the concentrations of vorticity. For example, laminar diffusion - on a 
timescale t ,  = O ( e 2 / v )  - would significantly redistribute core vorticity in a time of 
several rotation periods. The vortices have lifetimes much longer than several 
rotation periods, and disappear by catastrophic breaking events - not by diffusion. 
Vortices can be maintained in the required equilibrium condition only by the presence 
of a time-averaged horizontal motion directed towards the core regions. The 
horizontal convergence could be supplied by a slow steady motion from a local region 
of scale I , .  The balance is sketched in figure 17(a),  and was discussed many years 
ago by Burgers (1948) in a slightly different context. 

Conversely, the maintenance of vortex strength can be viewed as arising from the 
vertical stretching of the core, which is related by continuity to the horizontal 
convergence. The induced axial velocity associated with a propagating soliton is 
capable of transporting core fluid along the axis of the vortex. (The axial movement 
of individual particles has been observed qualitatively, but not with sufficient 
accuracy to compare with theoretical estimates.) In the steady state a portion of the 
energy to maintain the turbulence comes from the region near the grid (in the form 
of an excess of upgoing waves), but waves are also produced all along the length of 
the vortex cores. The local distortion of a vortex core by a neighbouring core might 
be expected to initiate a wave pair, one wave travelling upward and one downward. 
A local horizontal convergence would then be produced as a result of the wave motion 
(and the axial flow), as sketched in figure 17 (6). Unfortunately, we could not establish 
an unequivocal connection between vorticity concentration and wave motion. The 
present evidence is only suggestive, and other mechanisms providing the required 
horizontal convergence are possible. The true dynamical importance of the waves - as 
well as how the results might apply to oceanic and atmospheric phenomena - are 
subjects for future study. 
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FIGURE 17. (a)  Horizontal convergence required for maintenance of concentrated vorticity field. 
( b )  Convergence produced by wave pair at a distortion of the vortex core. 
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